Aufg.	2009 SII							BE
1	a) $P(X = 5) = {7 \choose 5} \cdot \left(\frac{18}{37}\right)^5 \cdot \left(\frac{19}{37}\right)^2 \approx 0,1509$							
	b) $P(X \le 5) = 1 - (P(X = 6) + P(X = 7)) = 1 - \left(\left(\frac{7}{6} \right) \cdot \left(\frac{18}{37} \right)^6 \cdot \left(\frac{19}{37} \right)^1 + \left(\frac{18}{37} \right)^7 \right) \approx 0,9459$						7	
	c) $P(\{(1;0;1;0;1;0;0)\}) = \left(\frac{18}{37}\right)^3 \cdot \left(\frac{19}{37}\right)^4 \approx 0,0080$							
2	a) $P(X \ge 1) = 1 - P(X = 0) = 1 - \left(\frac{25}{37}\right)^2 \approx 0,5435$. b) $P(E) = 1 - 12 \cdot \left(\frac{1}{37}\right)^2 \approx 0,9912$							6
3.1		Ei	$\overline{\mathrm{E}_{1}}$	Σ	12			6
	E ₂	6/37	12/37	18/37				
	$\overline{E_2}$	6/37	13/37	19/37	$P(E_1) = \frac{12}{37}; P(E_2) = \frac{18}{37}.$ $P(E_1 \cap E_2) = \frac{6}{37} \neq P(E_1) \cdot P(E_2) ;$		O(F) ·	
	Σ	12/37	25/ /37	1	1	37 37 tochastisch abhängig		
3.2	$P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1 \cap E_2) = \frac{12}{37} + \frac{18}{37} - \frac{6}{37} = \frac{24}{37}$							2
4.1	z.B. Baumdiagramm (Wahrsch. von Elementarereignissen hier nicht erforderlich!)							7
			-3e		0	3e	6 e	
	P(X=	x)	0,3085		0,4442	0,2132	0,0341	
4.2	$E(X) = -300 \cdot 0,3085 + 300 \cdot 0,2132 + 600 \cdot 0,0341 = -8,13$ $Var(X) = 90000 \cdot 0,3085 + 90000 \cdot 0,2132 + 360000 \cdot 0,0341 - (8,13)^{2} \approx 59162,90$ $\sigma \approx 243,23$							4
5.1	Testgröße: Anzahl des Ereignisses "erstes Dutzend" unter 200 Spielen.							
	H_0 : $p = \frac{1}{3}$; (Gegenhypothese: $p < \frac{1}{3}$)							
	Ablehnungsbereich von H_0 : $\{0;, a\}$ $P(T \le a) \le 0.05$; daraus: $a = 55$. Maximaler Ablehnungsbereich von H_0 : $\{0;, 55\}$.							5
	Erst bei mindestens 56 "Treffern" wird Lord Grips seine Vermutung auf Grund des Testergebnisses fallen lassen.							
5.2	Lord Grips entscheidet sich aufgrund des Testergebnisses dafür, dass der Roulette-Tisch in Ordnung ist, obwohl dies in Wirklichkeit nicht der Fall ist. Diese Fehlerwahrscheinlichkeit lässt sich deshalb nicht ermitteln, weil für die Gegenhypothese keine Wahrscheinlichkeit bekannt ist.							

Gesamt: 40