Aufg.	2016 SI	BE
1.1	$0.3 \cdot x = 0.18; x = 0.6$	
	ω gS g \overline{S} mS mS kS k \overline{S}	5
	P({ω}) 0,35 0,15 0,18 0,12 0,06 0,14	
1.2	$E_1 = \{gS; mS; kS\}; P(E_1) = 0.59$	
	$E_2 = \{mS; m\overline{S}; kS; k\overline{S}\}; P(E_2) = 0.50; P(E_1 \cap E_2) = 0.24$	7
	$P(E_1) \cdot P(E_2) = 0.59 \cdot 0.50 \neq 0.24 = P(E_1 \cap E_2) \implies E_1 \text{ und } E_2 \text{ sind stochastisch abhängig.}$	
	Mit $P(E_1 \cap E_2) \neq 0$ folgt $E_1 \cap E_2 \neq \{\}$ \Rightarrow E_1 und E_2 sind vereinbar.	
1.3	$P(E_3) = B(30; 0,30; 10) \approx 0,14156$	
	$P(E_4) = \sum_{i=0}^{15} B(30; 0,50; i) - \sum_{i=0}^{8} B(30; 0,50; i) \approx 0,56417$	7
	$P(E_5) = B(30; 0,14; 0) + B(30; 0,14; 1) = {30 \choose 0} \cdot 0,14^{0} \cdot 0,86^{30} + {30 \choose 1} \cdot 0,14 \cdot 0,86^{29} \approx 0,06377$	
1.4	$18 \cdot 0,15^3 \cdot 0,85^{17} \approx 0,00383$	3
2.1	0,15+0,03+0,21+a+b=1	4
	$2 \cdot 0,15 + 3 \cdot 0,03 + 4 \cdot 0,21 + 5a + 6b = 4,8$ $a = 0,09$; $b = 0,52$	+
2.2	Ansatz: $50 \cdot [0.15(10 + k) + 0.03 \cdot 14 + 0.21(14 + k) + 0.09 \cdot 18 + 0.52(18 + k)] = 880$	6
	\Leftrightarrow 0,88 · k = 1,76 \Leftrightarrow k = 2 \Rightarrow Der Stromanschluss kostet pro Tag 2 \in .	
3.1	T: "Anzahl der gezogenen Gasflaschen mit zu geringem Füllgewicht unter 100."	
	$H_0: p = 0.03$	
	Ablehnungsbereich: $\overline{A} = \{a+1;; 100\}$	6
	$\sum_{i=a+1}^{100} B(100;0,03;i) \le 0.05 \Leftrightarrow \sum_{i=0}^{a} B(100;0,03;i) \ge 0.95$	
	Aus Tafelwerk: $a = 6$, also max. Ablehnungsbereich: $\overline{A} = \{7;; 100\}$	
3.2	Fehler 2. Art: Obwohl mehr als 3 % der Gasflaschen das Füllgewicht von 5 kg unterschreiten, entscheidet man sich aufgrund des Tests dagegen, weil man in der Stichprobe nur höchstens 6 fehlerhafte Flaschen findet.	2

Gesamt: 40