Aufg.	A I	BE
1.1	$f(x) = 0 \Leftrightarrow x \cdot (x^2 + 8x + 16) = 0 \Leftrightarrow x \cdot (x + 4)^2 = 0 \Rightarrow x_1 = 0 \text{ einfach } \forall x_2 = -4 \text{ doppelt}$	4
1.2	$f'(x) = -\frac{1}{4}(3x^2 + 16x + 16); \ f'(x) = 0 \implies x_1 = -\frac{4}{3} \lor x_2 = -4$	8
	Z.B. mithilfe einer Vorzeichentabelle: G_f ist streng monoton steigend im Intervall	
	$\left[-4; -\frac{4}{3}\right]$ sowie streng monoton fallend in den Intervallen $]-\infty; -4]$ und $\left[-\frac{4}{3}; \infty\right[$.	
	Damit: $T(-4 0)$; $H(-\frac{4}{3} \frac{64}{27})$	
1.3	$f''(x) = -\frac{1}{4}(6x+16); f''(x) = 0 \implies x = -\frac{8}{3}$	5
	Mit z.B. Skizze des Graphen der 2. Ableitung \implies maximale Steigung $m_{max} = f'(-\frac{8}{3}) = \frac{4}{3}$	
1.4	Graphen	4
	6	
	H H	
	G_{f}	
	\mathbf{x}	
	-6 -4 -2 9 N	
	G _p -2	
	-4+	
	-6+	

Aufg.	AI	BE
2.1	$p(x) = ax^2 + bx + c$	7
	Mit $p(-6) = 6$, $p(-2) = -2$ und $p(1) = 2, 5 \implies a = \frac{1}{2}$; $b = 2$; $c = 0$	
	Damit: $p(x) = \frac{1}{2}x^2 + 2x$.	
2.2	Graph siehe 1.4	2
2.3	Markierung	6
	$A = \int_{-6}^{-4} (p(x) - f(x)) dx = \int_{-6}^{-4} (\frac{1}{4}x^3 + \frac{5}{2}x^2 + 6x) dx = \left[\frac{1}{16}x^4 + \frac{5}{6}x^3 + 3x^2\right]_{-6}^{-4} = \frac{5}{3}$	
3.1	$h_t(x) = 0 \implies x_1 = 0 \lor x_2 = -4 \lor x_3 = 3 \lor x_4 = \frac{1}{t} \text{ für } t \neq 0$	7
	Für $t = \frac{1}{3} \lor t = -\frac{1}{4} \lor t = 0 \Rightarrow 3$ Nullstellen: $x_1 = 0 \lor x_2 = -4 \lor x_{3 4} = 3$	
	bzw.: $x_1 = 0 \lor x_{2 4} = -4 \lor x_3 = 3$	
	bzw.: $x_1 = 0 \lor x_2 = -4 \lor x_3 = 3$	
	Für $t \in \mathbb{R} \setminus \{-\frac{1}{4}; 0; \frac{1}{3}\} \implies 4 \text{ Nullstellen: } x_1 = 0 \lor x_2 = -4 \lor x_3 = 3 \lor x_4 = \frac{1}{t}$	
3.2	Graph $1 = G_{h_0}$: Nullstellen $\Rightarrow t = 0$ und negativer Leitkoeffizient.	6
	Graph $2 = G_{h_{-0.5}}$: Nullstellen $\Rightarrow t = -0.5$ und negativer Leitkoeffizient.	
	Graph 3 gehört nicht zur Funktionenschar, da es für kein $t \in \mathbb{R}$ eine doppelte Nullstelle $x = 0$ gibt.	
4.1	$V = R^{2}\pi h - (R - 10)^{2}\pi (h - 10)$	6
	Mit $h = 90 - R \implies V(R) = \pi(-10R^2 + 1700R - 8000)$	
4.2	G_V ist Teil einer nach unten geöffneten Parabel mit Scheitel bei $R = \frac{-1700}{-20} = 85$.	5
	\Rightarrow G _V ist in 10 < R ≤ 55 streng monoton steigend \Rightarrow absolut größter Wert von V bei R = 55 \Rightarrow h = 35. Damit beträgt die maximale Füllhöhe 25 cm.	

Gesamt: 60