Lösungen:
- a)
Scheitel: (1|1)
Scheitelpunktform: y = (x-1)˛
+1
b) Scheitel: (-2|-1)
Scheitelpunktform: y = (x+2)˛
-1
c) Scheitel: (2|0)
Scheitelpunktform: y = 2(x-2)˛
- a) x1= -4; x2=
2
b) x1= 1; x2 = -3
c) S(1|1)
d) S(-3|0)
- a) f(x) = -2x2 8x
6
LFF: x1/2 =
ā x1 = -3; x2
= -1
LFF: y = -2(x+3)(x+1)
SF: xs =
= -2; ys = 2 S(-2|2)
SF: y = -2(x+2)˛ +2
b) g(x) = x2 -7x +
LFF: x1/2 =
ā x1 = 5,5; x2 = 1,5
LFF: y = (x-5,5)(x-1,5)
SF: xs =
= 3,5; ys = -4 S(3,5|-4)
SF: y = (x-3,5)˛ -4
c) h(x) = -
x2 +
x
LFF:
x1/2 =
ā x1 = 0; x2 = 6
LFF: y = -
x (x-6)
SF: xs = –
= 3; ys
= 1 S(3|1)
SF: y = -
(x-3)˛ +1
- P(2|10) ; x1=1 ;
X2=-3
y = a(x-1)(x+3)
P einsetzen:
10 = a(2-1)(2+3)
10 = 5a ā a = 2 ā y = 2(x-1)(x+3)
- S(
|1); y = a(x-xs)˛ + ys
ā y = (x -
)˛ +1
y = x˛ - x + 
- a) 3
b) 2
c) 1