27.11.09

Arbeitszeit: 90 Minuten

Gruppe A

Analysis

- 1. Gegeben ist eine Funktion mit $f(x) = \frac{(x+2)^2}{x^2-2x}$ und $D_f \subset \mathbf{R}$. Der Graf von f sei G_f .
 - 1.1 Geben Sie den maximalen Definitionsbereich von f an und untersuchen Sie f auf Nullstellen. [3P.]
 - 1.2 Untersuchen Sie das Verhalten von f in der Umgebung der Definitionslücken und geben Sie die Gleichungen sämtlicher Asymptoten von G_f an. [6 P.]
 - 1.3 Zeigen Sie, dass sich f auch in der Form $f(x)=1+\frac{6x+4}{x^2-2x}$ darstellen lässt.

 Untersuchen Sie, ob der Graf von f eine seiner Asymptoten schneidet und berechnen Sie gegebenenfalls die Koordinaten des Schnittpunkts. [5 P.]
 - $1.4 \ Berechnen \ Sie \ die \ Koordinaten \ der \ Horizontalpunkte \ von \ G_f \ und \ entscheiden \ Sie \ z.B.$ aufgrund bisheriger Ergebnisse um welche Art von Horizontalpunkten es sich jeweils

handelt.[Zw. Erg.: f'(x) =
$$\frac{-6x^2 - 8x + 8}{(x^2 - 2x)^2}$$
] [9 P.]

- 1.5 Zeichnen Sie den Grafen von f und seine Asymptoten für $-7 \le x \le 7$. Verwenden Sie dazu eine ganze Seite. [5 P.]
- 2. Geben Sie ein Beispiel für ein uneigentliches Integral an, das einen endlichen Wert annimmt und führen Sie die zugehörige Berechnung durch. [4 P.]