20.3.17

ANALYSIS

In einem Fahrradgeschäft kann die Anzahl der verkauften "Racer"-Mountainbikes bis zum Zeitpunkt t in Tagen durch folgende Funktion beschrieben werden: $f(t) = \frac{a}{1+9e^{ct}}$ $(a, c \in \mathbb{R})$

- 1) Berechnen Sie die Werte für a und c, wenn zum Zeitpunkt t = 0 bereits 500 Fahrräder und nach einer Woche 681 Fahrräder verkauft wurden. (Ergebnis: a = 5000, $c \approx -0.05$)
- 2) Bestimmen Sie rechnerisch, wie viele Fahrräder nach 58 Tagen verkauft wurden. (2)
- 3) Bestimmen Sie $\lim_{t\to\infty} f(t)$ und interpretieren Sie diesen Wert im Sachzusammenhang. (3)
- 4) Berechnen Sie, nach wie vielen Tagen bereits 4500 Räder verkauft waren. (3)
- 5) Die erste Ableitung der Funktion f(t) beschreibt die Anzahl der verkauften Fahrräder pro Tag. (4) Bestimmen Sie rechnerisch, wie viele Räder am Tag 50 verkauft werden.

(Zwischenergebnis: $f'(x) = \frac{2250 \cdot e^{-0.05t}}{(1+9e^{-0.05t})^2}$)

- 6) Zeichnen Sie die Verkaufskurve G_f für $0 \le t \le 130$ in ein Koordinatensystem (4) (Maßstab: $1 \text{cm} \le 10$ Tage, $1 \text{cm} \le 1000$ Fahrräder)
- 7) Die zweite Ableitung der Funktion f(t) lautet wie folgt: $f''(x) = \frac{-112,5 \cdot e^{-0,05t}(1-9e^{-0,05t})}{(1+9e^{-0,05t})^3}$. (5) Bestimmen Sie den Wendepunkt des Graphen G_f und interpretieren Sie die Bedeutung dieses Zeitpunktes im Sachzusammenhang.

gesamt (25)