VEKTORGEOMETRIE

In einem kartesischen Koordinatensystem sind die Gerade $g: \vec{x} = \begin{pmatrix} 7 \\ 1 \\ 3 \end{pmatrix} + \lambda \cdot \begin{pmatrix} -5 \\ 2 \\ -4 \end{pmatrix}$ und die Geradenschar $h_a: \vec{x} = \begin{pmatrix} a \\ 5 \\ -4 \end{pmatrix} + \mu \cdot \begin{pmatrix} 3 \\ -2 \\ 3 \end{pmatrix}$ mit $a \in \mathbb{R}$ gegeben.

- 1. Bestimmen Sie den Schnittpunkt S der Gerade g mit der $x_1x_3 Ebene$ (Spurpunkt). (3)
- 2. Untersuchen Sie die gegenseitige Lage von g und h_a in Abhängigkeit von a. (8)
- 3. g und h_{-1} (a = -1) spannen eine Ebene im Raum auf. Geben Sie eine Gleichung dieser Ebene E in Parameterform und in Koordinatenform an. (6)

(Mögliches Ergebnis: $E: 2x_1 - 3x_2 - 4x_3 + 1 = 0$)

4. Bestimmen Sie die Achsenschnittpunkte der Ebene E. (3)

Gegeben ist nun außerdem die Ebene $F: x_3 + 1 = 0$.

- 5. Geben Sie die besondere Lage von F im Koordinatensystem an. (1)
- 6. Bestimmen Sie eine Gleichung der Schnittgerade s von E und F. (4)

gesamt (25)

VIEL ERFOLG!